加入收藏    设为首页
热销产品
> IGBT散热 > 文章正文

NTC温度传感器测量IGBT模块温度(2)


2 应用NTC进行温度测量
NTC安装在IGBT模块的DCB上,在模块内的热量流通如下图描述。
Flow of thermal energy inside a power electronic module
Flow of thermal energy inside a power electronic module
芯片产生的热量大部分直接流到散热器然后从散热器散发到环境中。此外,热流量通过DCB材料及基板流向NTC的位置。
因为热量不能瞬间流动,NTC只适用于表征稳定工作状态下的IGBT模块外壳温度。瞬态现象如短路条件下产生的热量不能通过NTC监测,因为相关的时间常数太小,因此,NTC不能用于IGBT短路保护!文章来源:http://www.igbt8.com/sr/169.html
表示热量流通路径的等效电路如下图所示:
热量流通路径的等效电路
Equivalent thermal schematic
From this overview, two conclusions can be drawn:
1. As there is a temperature drop along the path RthJNTC connecting the chip’s junction to the NTC, the thermistor’s temperature TNTC has to be lower than the junction temperature TJunction.
2. For the same reason, the temperature of the NTC has to be higher than the temperature that can be detected at the heatsink.
From experience, the difference between the heat sink’s temperature and the NTC’s temperature is about 10K at temperature levels common for power electronic devices.
Knowing the proper values for the Rth-chain is mandatory if temperatures that cannot be measured directly are calculated from these values. For a given module, the according values for RthJC and RthCH can be read from the datasheet for both the IGBT as well as for the diode.转载请注明出处:http://www.igbt8.com/
datasheet for both the IGBT as well as for the diode
Rth-Values as printed in Infineon’s datasheets for power electronic modules
With these values the thermal situation now can be calculated
 thermal situation now can be calculated
As the NTC only reflects the case temperature, it is sufficient to know the sum of losses and the module’s total RthCH that is given in the section “Modul / module” within the datasheet as well:
RthCH that is given in the datasheet
NTC测量温度几乎与管壳温度相同,在较高的温度水平上,NTC测量温度大概比散热器的温度高10℃左右,这取决于散热器的冷却效率和模块与散热器的接触热阻。通过NTC的温度值TT,还可以利用最靠近NTC的IGBT芯片的最大功耗估算其结温Tj。
最大功耗估算其结温Tj
由于检测电流通过NTC会加热温度传感器本身,例如:TT=100℃,在NTC的温度曲线中查到其阻值为RthT=500Ω,NTC的热传导率为145K/W,通过此值可定义上拉电阻:
定义上拉电阻
如果把NTC的本身温度上升限制在ΔTT=1K,则可允许的最大功耗为7mW是可以接受的,若外加反馈电压U0为5V,则计算出上拉电阻的阻值为837Ω,因此可选择阻值为820Ω的电阻代替上拉电阻。这时,I=5V/(520+500)Ω=3.8mA就可以选择V<3.8mA×500V=1.9V的电阻值为电压比较器的关断阀值,过热保护功能可以通过模拟电路来实现。如果流过NTC的电流过小,则检测到NTC上的电压值也比较小,因而检测的准确性也会降低。若检测电流过高,NTC本身的温度上升也过高,影响检测的准确性。因此建议检测电流的最佳值设定在3~4mA之间。
 
NTC电阻—温度曲线图
NTC电阻-温度曲线图
温度传感器的时间常数是2秒,由于芯片热时间常数非常小,而整个散热系统的时间常数又非常大,因此,NTC检测到的温变是时间比较长的过载情况。上图以曲线的形式显示了温度与电阻值的关系,也可以使用下面的解析函数来描述曲线:
解析函数来描述电阻温度曲线
其中:B=3375K,R1=5KΩ,T1=298K,
T2是检测温度(开氏温标),R2在T2温度时NTC的阻值。
验证码: 点击我更换图片
   上海菱端电子科技有限公司:
   联系人:夏小姐
   服务热线:021-58979561
   业务咨询qq:447495955
   业务咨询qq:1852433657
   业务咨询qq:513845646
   技术支持qq:313548578
   技术交流群:376450741
   业务咨询:  点这里给我发消息
   业务咨询:  点这里给我发消息
   业务咨询:  点这里给我发消息
   技术支持:  点这里给我发消息
   媒体合作:  点这里给我发消息